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NOMENCLATURE 

dimensionless velocity gradient, ati/& evaluated 
atji=O; 
dimensionless velocity gradient, &i/ay, evaluated 
aty=O; 
heat-transfer coeflicient defined by equation (5) ; 
thermal conductivity ; 
Nusselt number defined by equation (4); 

2(r0 - rib, 
k(T; - T,) ’ 

hD,_ 8.. 
k 

_--AL-; 
ejj - emj 

Nusselt number defined by equation (13); 
0 for UWT, 1 for IJWF; 
heat flux at the wall ; 
radial coordinate ; 
dimensionless radial coordinate, r/r0 ; 
radius ratio, r,/r,; 
-1 forj =o, +1 forj = i; 
temperature ; 
dimensionless temperature, (T - ‘&)/(T, - TA 
for a uniform wall temperature (T - T,M(q,r,/k) 
for a uniform wall flux ; 

T-T, 

q& O - 4/k ’ 
T - T. 

T,-; 
dimensionless velocity, u/u, ; 
axial coordinate ; 
W[(ro - rihJ 
4u3 _. 

9 ’ 
dimensionless radial coordinate, s(r - r,)/rj; 
s(P - ?,) 
p. 
(1 - r*) 

Greek symbols 
a, thermal diffusivity ; 

A 
9, 

Yb ; 
T for a uniform wall temperature or T/u for a 
uniform wall flux ; 

I, ax _ Z I_r* 3. 
2-- u,rj c A rj ’ 

0, (9s ; t ) 

@, 2q,(ro - rJ/(k[T, - Xl); 
43 expansion function. 

Subscripts 
e, entrance ; 
I, inner wall ; 
1. heated wall ; 
4 mean ; 
0, outer wall ; 
w, wall ; 
a asymptotic. 

HEAT transfer in annuli has been studied analytically by 
several investigators [l-3] using both Leveque and Graetz 
type approaches. The results are characteristically dependent 
on the radius ratio r* and each value of the radius ratio 
requires a completely new solution of the energy equation. 
Worsoe-Schmidt [l] presented a similarity solution of the 
same nature as the classical Leveque solution except that it 
included a fully developed velocity profile and the effects of 
curvature, while Lundberg et al. [2] obtained a solution 
similar to the classical Graetz expansion. These yield over- 
lapping results for intermediate axial distances. Because. the 
Nusselt numbers obtained in these studies depend on the 
radius ratio, a large number of curves are required to present 
an extensive investigation of the variation of the Nusselt 
number with r*. One of the objectives of the present study 
is to find a method of correlating the results for different annuli 
so that the numerical results can be more easily applied to 
design problems. 

Aho investigated are two of the simplifying assumptions 
that have been employed in many studies of heat and mass 
transfer systems wherein the temperature or concentration 
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changes are confined to a boundary layer which is thin 
compared to the momentum boundary layer. These assump- 
tions are that the velocity distribution is linear and that the 
effect of curvature is negligible. The limitations of these 
assumptions employed singly or together have not been 
clearly established, although it is certain that they yield 
accurate results at small axial distances from the onset of the 
concentration or temperature boundary layer. 

This latter objective will be considered first because it 
provides a basis for reaching the other objectives. Therefore, 
the predictions obtained in the thermal entrance region of 
annular passages with either a uniform wall temperature 
(UWT) or uniform wall flux (UWF) will be compared for 
three different models. These are : Case 1, curvature and fully 
developed velocity included; Case 2, curvature and linear 
approximation to the velocity; and, Case 3, the Leveque 
solution. Results for Case 1 are given by Worsee-Schmidt [ l] 
while Case 2 is developed in this paper. It should be noted 
that a generalized approach for deriving higher order correc- 
tion terms to asymptotic results for laminar forced convection 
heat or mass transfer was developed by Acrivos and Goddard 
[4] and that the method of solution used for Cases 1 and 2 
is really a specialized application of this approach. 

ANALYSIS AND RESULTS FOR CASE 2 

Using the linear approximation to the velocity distribu- 
tion, the dimensionless energy equation in cylindrical co- 
ordinates becomes 

aT aZT s aT 
yan = p + p---. 

1 + sy ay 
(1) 

The subscriptj will be used to indicate whether the thermal 
boundary layer is developing over the inside wall of the 
annular space (j = i, s = 1) or inside the outside wall (j = o, 
s= -1). 

To solve equation (I), the similarity coordinate 

B = Y/U 

is introduced where 

fJ = (9n)* 

Proceeding in the usual manner [ 1, 5.61 of expanding 6 in a 
power series in rr with coefficients &(B), an equation similar 
to equation (llb) of [l] is obtained for the 4. with the right- 
hand side replaced by 

The zero order coefficients, Q&3), are obtained from Case 3, 
the Leveque solution. 

If the local Nusselt number is defined as 

2hr, 
Nuj = k (4) 

where 

then a plot of Nuj vs. G results in a single curve for each 
boundary condition at e-ch wall. A heat-transfer coeffi- 
cient based on the driving force 

r, -~ T”, 

is used later in this paper. Since 7, is only negligibly different 
from T, in the region under consideration here, the heat- 
transfer coefficient based on the difference between the wall 
temperature and the bulk mean temperature r, will not 
differ significantly from that given in equation (5). The Nusselt 
number given by equations (4) and (5) can be expressed as 

Nu = - 2 f &(O)(i” ‘. p=O 16) 
Ii=0 

Nu = 2/ f &(O)u"". p = I. (7) 
“=O 

Quantities necessary to calculate the Nusselt numbers are 
given in Table 1. Note that the values of the zero order 

Table 1. Expansionfunctions evaluated at the 
wall for U WF and derivatives of the expan- 
sion functions evaluated at the wallfor U WT 

with j = i 

n MO) d%(O) 

0 - 1.11985 @73488 
1 - 0.50047 - 024103 
2 0070193 0.098930 
3 - 0.03083 1 - 0@45047 
4 0.017277 0022072 

~~. __--~ 

functions for p = 1 and the derivatives of the zero order 
functions for p = 0 at the wall are the same for j = o and i 
and that 

K_“(O) = (-1)“9b,=,(OX n>O and p=O 

&.,(O) = (- 1)” K,=,(O), n>O and p=l 1 
(8) 

such that only one set of functions for each boundary con- 
dition need to be tabulated. 

To compare the predictions of the three cases it is necessary 
to relate the dimensionless axial distances, X, and Nusselt 
number definitions, Nu~.~,, used in [l] to those used here. 
These are summarized below. 

X 1-r*3 

A_=2 -- ’ 
( ) 

rJ ij = -, p = 2 (9) 
fj r0 ro 
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i. 
Nuj = 1 NUw.s., (l - F)jl; 

1 - r* 
p = 0 (10) 

more exact solution. The agreement breaks down only at 
larger values of 0 where the thermal boundary layer has 
grown to a significant fraction of the annular gap and one 

?. 
Nuj = J 

T)Z) - T$jj 
’ would ordinarily use a Graetz-type solution. Similar 

1 -r* ( > 
=p Nuws.,; P = 1 (11) 

J results were obtained at the outside wall. 

27 .X The improvement in the Lev6que solution, Case 3, brought 
T(Z). = 

m.J *. (12) about by including the effects of curvature for the outside wall 
is shown on Fig. 1. At very small values of u the local Nusselt 

Since the radius ratio, r*, appears as a parameter for Case 1, numbers for all three cases are the same. As u increases 
functions similar to the 4”‘s used here must be computed for however, the results for Case 2 are more nearly in agreement 
each value of r* considered. Thus the computational effort with Case 1. The maximum value of D for which the Nusselt 
is reduced substantially by making the linear approximation numbers for Case 2 are within 5 per cent or less of those for 
to the velocity distribution. Case 1 is a slight function of the radius ratio and the boun- 

To test the validity of the assumptions, the local Nusselt dary condition, the agreement being better for smaller r* 
numbers obtained for Cases 2 and 3 were compared to the and for the UWF boundary condition. To insure 5 per cent 

1 x 7=0*5 
+ r*=0*25 

Case I 
. r*=0.1 

I 0 r*=0*05 

A r*=o.o I 

A r*=O 

Case 2 --- 

case 3 - 

I I I I I 
0-I to 

c? 

FIG. 1. A comparison of the local Nusselt numbers defined by equations (12) and (13) for Cases 1,2 and 3 with j = O. 

more exact solution given by Case 1 and the result at the 
inside wall is shown in Fig. 1. Nusselt numbers defined by 
equations (4) and (5) were computed for Case 1 using the 
results tabulated in [l] and are shown on Fig. 1 for various 
radius ratios. The results for Cases 2 and 3 are shown as 
dashed and solid lines respectively. This figure illustrates 
clearly that the Nusselt numbers for all radius ratios are well 
correlated by a single curve for any given boundary condition 
and that the results for Case 2 are in good agreement with the 

accuracy for the UWT boundary condition in Case 2 
requires IJ < 0.1 for r* = 0.5 and u Q 0.2 for r* c 0.25. 
For Case 3, cr < 006 is required for all r*. At (r = 0.1 the 
Lev6que solution is 5 per cent higher than Case 2. For 5 per 
cent accuracy with the UWF in Case 2 the limits are c < 0.15 
for r* = 0.5 and d Q 0.25 for r* < 0.25. For the Lev&que 
solution e < @l is needed. 

A comparison for the three cases at the inside wall shows 
that the results for Case 1 are bracketed by the other two 
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with the LevZque solution below and the linear approxi- 
mation above the exact solution The LevQue solution is 
slightly better than Case 2 with I* > 05 and a UWT boun- 
dary condition since u < 0.3 yields 5 per cent accuracy in 
Case 3 while 0 < 0.175 is required for Case 2. For P* < 0.25 
the limits are @2 and 0.4 for Cases 3 and 2 respectively. For 
the UWF condition Case 2 requires a < 0.25 for r* = (1.5 
while for r* < 0.25 the results are still within 5 per cent or 
less of those for Case 1 up to e = @l. Case 3 requires 4 < 0.3 
for r* = 05 and (5 < 0.175 for r* < 0.25. 

The results for the three cases were also compared on the 
basis of the definitions given in [l]. This is essentially a 
comparison of the dimensionless wall fluxes and mean tem- 
peratures for UWT and the dimensionless wall temperature 
for UWF. In general Case 2 predicts values which are higher 
than those for Case 1 for UWT while for UWF, Case 2 
predicts a lower wall temperature and a larger Nusselt 
number. At the outside wall, the errors associated with Case 
2 are magnified in Case 3 and Case 2 gives a more accurate 
result for the radius ratios considered here (r* G 0.5). For 
example at R x 10m3, with r* = 0.02, j = o and p = 0, 
the values of @ and T, for the three cases are 12.934, 13.20, 
14.203 and 0.03930, 0.03982, 0.04177 respectively. At the 
inside wall the results for Case 1 lie between those for Cases 
2 and 3. For small radius ratios, Case 2 is more accurate: 
for example, with p = 1, r* = 0.1 and X = 10m4, the wall 
fluxes for Cases 1,2 and 3 are 60.873.62.75 and 54.153 respec- 
tively. More complete comparisons arc available elsewhere 

[71. 

CORRELATION EXTENDED TO LARGER AXIAL 
DISTANCES 

The preceding comparisons have shown that the radius 
ratio can be eliminated as a parameter and that when it is 
eliminated, accurate values of the local Nusselt number can 
be obtained in the thermal entrance region. In order to 
determine if r* can be eliminated for larger axial distances 
the results of Lundberg et al. (LMR). modified by the geo- 
metry correction suggested by equations (10) and (11). 
were plotted against the new axial corrdinate, 0. 

The Nusselt number used by LMR is defined in terms ofthe 
equivalent diameter and the bulk mean temperature. This 
was converted to Nusselt number based on the radius of the 
heated wall by using equation (13) 

Nuf = Nu 
Gjj rj 

ojj - omj 1 - r* 
(13) 

and plotted vs. (r for several different cases. Typical examples 
are shown in Figs. 2 and 3 (more complete tabluated compari- 
sons are available in [7]). The Worsoe-Schmidt results are 
also included on these figures. From these figures it is clear 
that correlating the local Nusselt numbers in this manner 
causes the curves for different values of the radius ratio 
to fall on a single curve over almost the entire range of interest. 
Deviations occur only as the asymptotic region is approached. 

100.0 -- r -.--- 
r* Nu; A 

b o-02 4-07 4.59 
I r 0.05 4.27 4.73 

1 -% 

;\ 

l ; + 0.10 0.25 0.50 4.57 5.64 8.66 4.67 5.14 5.46 

1 

/ 
1.0' I L--i 

040 0.5 I.0 5.0 

FIG. 2. The local Nusselt number for the fundamental solu- 
tion of the 2nd kind defined by equation (22)for r* with j = o. 

The new correlation together with an expression for the 
asymptotic Nusselt number provides a rapid estimation of 
the local Nusselt number over the entire range of cr. 

The curved solid line through the results for the outside 
wall heated on Fig. 2 represents the limiting case of r* = 0, 
the circular tube obtained from the results of Brown [X] 
for X, > O-04. For smaller values of X, the tabulated results 
of Worsoe-Schmidt for r* = 0 were used. Sparrow et al. [9] 
give the tube results for UWF. 

A comparison between the results predicted by the modi- 
fied tube solution used in conjunction with Nugj and the 
LMR and WS results for several values ofr* shows excellent 
agreement for all but a small region where the local Nusselt 
number is approaching the asymptotic value. The maximum 
error here is approximately 10 per cent and this may be 
reduced by joining the asymptotic line and the tube solution 
with a smooth transition line. 

When the inner wall is being heated the tube solution no 
longer represents a limiting case since as r* goes to 0, the 
inner wall disappears. In this case the solution for the 
smallest r* studied in the literature, r* = 0.02 was used to 
form the lower portion of the limiting curve near the asymp- 
totic region in Fig. 3. An expression for the upper portion of 
the limiting curve was obtained using the solution of W-S 
for r* = 0.10, the smallest value of r* for which a solution is 
given. For uniformity it would have been desirable to use 
the same r* in the development of the limiting solution in 
both regions, but it is not necessary. The only requirement is 
that the two solutions overlap since all results fall on a single 
curve. A comparison of the results predicted by the limiting 
solution and the Nusselt numbers of LMR and W-S for 
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several values of r* shows the same type of agreement as in 
the previous case. 

The results presented here and elsewhere provide the 
basis for a rapid estimation of the local Nusselt number for 
any r* at any axial location. For example, if A is computed 
from 

2s(l - r*) 
A= 

fj[l + r*z - (1 - r;“)/( -In r*)] 

u can be obtained and the local Nusselt number read from a 
figure similar to Fig. 2 or 3 for the appropriate boundary 
condition. 

'-0 r r* Nu; I 

A 0.02 O-66 33 
x 0.05 0.92 16 
0 0.10 I.26 12 
+ 0.25 2.46 8 
. % 0.50 5.76 6 

‘+, 
“\ 

L 
.I0 

I I 

I.0 10.0 

Q 

FIG. 3. The local Nusselt num,er for the fundamental 
solutions of the 3rd kind defined by equation (22) for several 

values of r*-with j = i. 

Although this work has dealt only with the correlation 
of local Nusselt numbers, in many cases it is possible to use 
the same procedures in correlating mean Nusselt numbers 
defined as 

Since the mean Nusselt number is based on the local Nusselt 
number, it follows that an expression for the mean Nusselt 
number in a tube such as Hausen’s [lo] for UWT could be 
modified and used as the limiting curve for the mean Nusselt 
number in ammli along with a result valid for the upper 
portion of the limiting curve which could be developed from 

the solution of W-S for r* = 0. Another possibility for 
obtaining limiting curve for the mean Nusselt number at 
short distances is the empirical relationship given by Sieder- 
Tate [ 11) which is valid for small mean temperature changes. 

CONCLUSIONS 

The limitations of the assumptions common to Leveque- 
type problems have been investigated. It is clear that re- 
moving each of the assumptions raises the computation time 
substantially. The improvement brought about by including 
the effects of curvature over the LevQue solution is impor- 
tant at larger values of the axial distance. As expected, the 
effects of curvature are most important for smaller radius 
ratios. The Nusselt numbers obtained by including both 
the fully developed velocity distribution and the effects of 
curvature in the energy equation correlate well over sig- 
nificant axial distances with the solution in which r* is not 
a parameter, thus indicating the usefulness of the linear 
approximation to the velocity distribution. 

When the Nusselt number is defined in terms of rj as in 
equation (13) instead of the equivalent diameter; the radius 
ratio is effectively eliminated as a parameter. This can be 
seen in Figs. 2 and 3, where the curves for all values of r* 
form a single curve and deviate from it only as the asymptotic 
value of the Nusselt number is approached. 
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